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ABSTRACT

In this paper we study a model for the population transition probabilities

for a branching process composed of particles diffusing in a finite interval. The

model is in general non-Markovian since we assume the branching transformation

probabilities (for a particle depend on its age and position. The process is

described by the random number Nt~x) of particles in the interval I at time t

that are generated by a single particle initially at the point x in I. By

considering N (x) as a regenerative process with respect to the random age and
t

position of the initial particle when it is transformed, we develop a functional

equation for the generating function for N (x) . This functional equation is the
t

basis for our study of the population probabilities P(N (x) n) , n 0, 1, 2, .. ,
t

as function of x in I and t in [0, oo)

Our principal result concerns the extension to our model of the fundamental

result on the probability for ultimate extinction in a Galton-Watson branching

process, [3, Chapter XII] • Letting f0 (x) be the probability for ultimate extinction

in a process generated by a particle initially at x, we give a necessary and
sufficient condition for f (x) 1 -We also give a characterization of f0(x)

00

x in I, as the minimal positive solution of a functional equation which is

asymptotically. related to the basic equation.



EXTINCTION PROBABILITIES FOR AGE AND POSITION-DEPENDENT BRANCHING PROCESSES

Howard E. Conner

Introduction

The process is composed of particles diffusing inma bounded open interval

I0 and it is generated by one particle initially at x in I The diffusion is

represented by the conditional probability density function ( p. d. f) p(x, y; s),

where p(x, y; s) dy is the probability for a particle at x at time t to be at y

at time t + s, assuming it has not been previously to the boundary r- of 10.

Therefore, we assume

1.1 (a) p(x, y; s)= 0 for x in I, y in I and 0 < s < Qo and

(b) p(x, y; s) is non-negative and continuous for x, y in I and

0 < s <co

The boundary I- is an absorbing barrier for which a(x, t) is the probability

distribution function for a particle initially at x to be absorbed at r- within the

time t and a(x) = lim a(x, t) is the probability for the ultimate absorption at I'

for a particle at x. Consequently, we assume

Sponsored by the Mathematics Research Center, U. S. Army, Madison, Wisconsin;
under Contract No. DA-I -02Z-ORD-Z059.
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l.Z (a) a(x, t) is non-negative and continuous for x in I and

0<t<Qo with a(x,t)=l for x in r- and 0 < t < o,

(b) for each x in I, a(x, t) is nondecreasing as t increases and

(c) a(x) rli a(x, t) is continuous for x in I with
t-0-oo

a(x) 1 for x in I- and. not identically 1 for x in I0

Each particle has an independent random life span with the p.d f. g(s) where

g( s) ds is the probability for a particle formed at time T to end its life at time

T + s; and so, we assume

1,, 3 g( s) is non-negative and continuous for 0 < s < 0.

A particle whose life has ended at the age T and at the point x in I0 is replaced

by a random number k of particles with probability bk(x, T) and the expected

number of particles with which it is replaced is Z kbk(x, t) . Therefore., we

assume

1.4 (a) bk(x, s) is a non-negative continuous function for x in 10 and *

0<S<Go0
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(b) Z bk(Xs)= 1 for x in I0, 0<s <00.
k= 0

00

(c) M((x, s) = Z kbk(x, s) is positive, bounded and continuous
k~ 1

for x in I0 anrd 0< s <00.

At any given time t a particle initially at x in I0

1.5 (a) has been absorbed at ' with probability a(x, t) or

t
(b) hasended it's'life in I 'with'prob~ability f f p(x, y;s)g(s) dsdy or

"(c) is diffusing -in I with probability b(x,'t) ;

Ultimately a particle is either absorbed at r or transformed into new particles at

some interior point x. Consequently, we assume

1.6 b(x, t) is non--negative and continuous with lim b(x, t)= 0 as t- o

for x in I and 0_< t <0.
0

Since the events described in 1.5 are mutually exclusive and .exhaustive, we assume

t
1.7 (a) 1 6(x, t) + b(x, t)+ f f P(xy; s) g( s)dsdy and,

1 0
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(b) 1 a(x) + f.f p(xy; s)g(s)dsdy
10.

for x in I and 0 < t <0, where the integral in (b) is assumed to converge

uniformly for x in I.

We define the generating function for the transition probabilities

'fk(xi t) P P(Nt(X).; k) ,k 0., 1, Z, ... , by.

00

1.8 f(x, t; z) fk(x, t) ; f(x, t; 1) 1,
k'= 0

defined for x in I, 0 < t and Lz <.i. 1 If the initial particle is replaced at

the age s by k particles at the point y in 1, the generating function for the

population size at t > s is then f (y., t - s; z) . Since the probability for the

initial particle to be replaced at an age s with k particles at y is given by

bk(y , s)p(x, y; s) g( s) dsdy., this and the previous discussion suggests f(x, t; z)

satisfies the functional equation,

t
1.9 f(x, t; z) a(x, t) + zb(x, t) + ffh[y,s;f(y,t-s;z)]p(x,y;s)g(s)dsdy

I0

for x in I, 0< t < oo and [z. < <1, where

1.10 h(x, t; z) Z b bk(X, t) z ; h(x, t; i) 1
k=0

Having formally derived 1. 9, it is necessary to establish the existence of a
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-unique solution f(x, t; z) bounded by. 1 which is a generating function in z

for each x and t.

Before doing this, we introduce.

:00

1. K(x, y) f 11(y, s).p(xy; s)g(.s)ds", "
0

the expected number of particles replacing, a particle initially at x which ends

its life at y. We infer from the conditions of nonnegativity, continuity and uniform

integrability that K(x, y) is nonnegative and contiruous for x, .y 'in I. Therefore

K(x, y) defines a linear integral operator K

L.IZ Kf(x) f K(x, y) f(y)dy x in I
I

(a) transforming the class of functions continuous on I into the

subclass of functions vanishing on r. and

(b) transforming the convex cone of nonnegative functions on

I into itself.

Consequently, the operator K has special spectral properties similar-to. those for

a matrix operator with nonnegative elements. Of these we'use .the existence of a

positive characteristic number of minimum modulus to form a nec6ssaiy and"sufficient

condition for. ultimate extinction for N (x) -with probability. 1.

t1
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A number of mathematical models for branching processes• are covered

ih the papers of T. E. Harris, [4]., Limiting theorems for specific .models with

transformation probabilities depending on age or positiorn are also given' in these

papers and in papers by R. Bellman andT. E. Harris, [1], N. Levinsonp [6] and

the a.uthor3 [2]: The problem of ultimate extinction for a time-dependent branching

process is given in papers by B. A. Sevast'janov, [7, 8].

§2.- Existence of generatirng function.

The existence of a solution to 1.9 is given by the.

Theorem 2.1.. Suppose a(x t), b(xt), p(xy; t),g(t),h(xt;z) and .I(x, t)

satisfy the conditions given in 1. 1-1.4, 1. 61. 7 and 1. 10.. With these conditions,

.there exists a unique. solution f(x, t; z) to 1. 9 defined for x in I,[.0 < t < CO

and I zI < 1 and satisfying:

(a) f( x, t; z) is continuous on its. domain,

(b) If(x,t;z)I <,l with f(x, t; 1) 1 onits domain and

(c). for each x in I and .t > 0, f(x, t;z) is analytic. on

zI < 1 and therefore has a representation

00
f(x, t;z) -. fk(x, t) z

k-O

where each fk(x, t) is continuous and nonnegative for x in I.

and 0< t.
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Proof. We first list some properties of h(x, t; z) which follow directly from

the condition 1.4 and 1. 10 and an application of the mean'value theorem:

Z.1I (i) 0-. <h(x, t-r'). <h(x, t'; T 2

*(ii) 0 < Lh(x , t;.z) I<h(x',t;.I-zi)y

* (iii) .0 <I- h(x; t;-z) <p.+(x., t).. and*

(iv) Ih(x., t; z) -h(xj t; w) i<p(x, t )z -w]

for, x in 2, 0 < t, ZI I and jwi < 1 a.n'd 0 <Tý < Tz < l1

We define the sequence {f (x, t; z)} with f (X., t; z) 0-' by'
n0

t
2.2 f (x~t;z)=a(x,t)+zb(x,t) +f f h[ y2 S;f (y, t -s,z)]p(x, y;.s),g(s) dsdy

n+l 1 0 n

for x in 1., 0 <t and I Z1. <l

Ant induction argument using properties 2I. 1 and 1. 7 implies for

each n, n 0, 1,2,...

2.3 If.(x, t; z)I <1 *and fn.(x,t; 1) 1

nn

for x in 1, 0.tan 1z<.



-.8- . . • • • . #390

A second induction argument using the continuity .roperties of the given.

functions. and the analyticity of h(x, t;.z) in z shows each fn(x, t; z) is.
n.

continuous for x in I, t> 0 and I zI< 1.andforeach x in I and"t > 0

it is analytic for I z I < 1 Another :induction •argument using the nonnegatiVity

ak
of the given functions shows the derivatives (z) fn(x, t; 0). are continuousa n

.. and nonnegative for k = 0.1, 2 *Z.. . Therefore we assert each f (x, t; z)
n

has the representation for x in I, 0 < t and I z1 < 1 given by

2.4 fn (x., t; z) f with
k=0 nk

f k(x, t) continuous and nonnegative, k 0, 1, Z,

We use 2. l(iv) and Z. 2 to make the following estimate, for general n

t
Z. 5 If n+(x,t;z) -fn (x,t;z)I< f fAfn(Yt-s;z)-f n-l(y t-s;z)1ý±( ys)p(xy;s)g(s)dsdy

on x in I, 0 < t and I zI < I. The substitution of Z. 3 with n = 1 into the

integrand of Z. 5 with n 1 gives

t

lf z(x, t; z) f f(x, t; Z) < f f (Y,s) P(x, y; s) g( s) dsdy.
0 I

Setting A(T) =max{ fp(ys)p(x,y,s)g(s)dy I x in I, 0 < s < T} for 0< T,
I
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we have f z(X, t; z) -f (x,t;E)I <tA(T); and so, by induction, we have for

n 0 2 1 zY... I

. 6 If (X) t; z) -f (x, t z). < tn '/n •
n+ 1 n

on x in I, 0 <t < T and izI<i.

We infer from 2..6 that the f(x, t; z) converge as n--.00 to a limit
n

f(x, t; z) and that this convergence is uniform for any T-> 0 on x in I,0 <'t < T

and [ z[ < 1 . Therefore using the Moore -Weierstrass theorefns, we know

(a) f(x, t; z) is continuous for x in. I, t < 0 and I'z I < 1,

(b) f(x, t; z) is analytic in [zI <1 for each x in I, 0 < t and.

by letting n- - 00 in 2.2,

(c) f(x, t; z) is a solutionto 1.9 forxin I, 0 <Kt and [zi < 1.

The properties If(x, t; z) I < 1 and f(x, t; 1) M1 are consequences of the

convergence and 2. 3. -We use the Cauchy formula to write for each x in I and

0 <t

Zwr

1 XIt iO e -ike
2.7 f 1t) f dOn, k(X, t) fn(X• t, e) e

Since f (x, t; z) converges uniformly on x in I, 0 < t < T and zl < 1 for each

T > 0, we know the right side of Z. 7 converges uniformly on the same sets to
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fk x, t) = (f(x, t; 0) . Therefore, for any T > 0 each fk(x, t) is' the

uniform limit on x in I, 0, < t < T and" I zi < 1 of the continuous nonnegative

functions fk(x•t). given in 2.4 and so, we know each .f (x) t) is

continuous and nonnegative for x in I and 0 < t.,

To complete the proof we must show the solution f(x, t; Z) is unique

in the class of. functions continuous and bounded in magnitude by 1 on x in I,

0 < t and iz < 1. Suppose g(x, t; z) is a continuous function with

Ig(x, t; z)I < 1 on x in I, 0.< t and I zI < 1 satisfying 1.9 and consider

r(x, t; z) If(x, t; z) - g(x, t; .z) I . Since Ig(x, t; z)I < 1 we can use

.1. 9 and 2. 1(iv) to make the estimate

tZ. 8 r(x, t) z) _< f f r(yj, t -s, Z)[i(y., s) p(x., y; s) g( s)dyds .

0 I

Letting R(T,X, z) max {r(x, t; z) e- Ix in I; 0 < t < T } for

T and X> 0 and zI <1, wehave R(T,X,z)<oo and

R( T, X , z) < R(T,, X, z) f f e (y, s)p(x, y; s) g( s) dyds.
0 1

We know the integral exists, is finite, 1. 4 and 1. 7, and is a decreasing function
1

of k; so, we choose; K so that the value of the integral is less than . This

shows 0 < R(T,X0, z) < 0 for each T > 0 and Izi < 1 and consequently

g(x, t; z) = f(x, t; z) . Therefore f(x, t; z) is a unique continuous solution

to 1.9 satisfying If(x , t; z) I < 1, completing the proof.
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Similar functional equations can be derived and solved for the multivariate

generating functions

k k,

3.n1. n P(N t(x) ~k I..;N t(x) 1 i . n
ki y k I nn n

satisfying the consistancy condition that for every set of positive integers

(i! ""ia ), 1 < m <n'_

iF(x' tl, ""y t; zl, ""* Z = F(x, tl "..", ti; z' , *"", zi
I n n m

where z. =1 if i is not in (il ... I i)1 In

§ 3. Probability for eventual extinction.

Having established the existence of a unique continuous solution f(x, t; z)

to 1.9 on x in I, 0< t and 1z1 <1 satisfying

00 00k
3.1 f(x,.t; z) z 3 fk(x, t) z k 3 fk(x, t) =1

k=0 'k=0

where, each fk(x, t) is nonnegative and continuous, we formally identify the

fk(x, t) as the population transition functions for the population size N (x)

for a system generated by a particle initially at x. In particular setting z = 0

in 1.9, we have
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t
3.2 f 0 (x,t) a(x,t)+ ffh[y,s;fo(Y, t-s)]p(x,y;s)g(s)dyds

1I0

where f0 (x, t) formally gives the Prob. {N t(x) Ol 0N (x) 1}. Since f0 (x, t)

is nonnegative, bounded above by 1 'and continuous on x in I and 0 < tý

Theorem Z. 1, we know from the uniqueness argument following 2. 8 that f (x, t)
0

is a unique continuous solution to 3.2 satisfying If (x, t) I < 1 . We will use

this uniqueness property to show f 0 (x, t) is an increasing function of t for

each x in I, a property which is suggested by the probability context.

We define a sequence of functions for x in I and 0 < t by g (x,? t)= 0

and g (x,, t) T~(x, t) where T is a non-linear operator defined by
n+l n

t

3.3 Tg(x,t) = a(x,t) + f{ fh[y,s;g(yt-s)]p(xy;s)g(s)ds}dy,
1 0

for a continuous function g(x, t) on x in I and 0 < t.

An induction argument shows each gn (x., t) is a nonnegative continuous function

bounded above by 1 on x in I and 0 < t, and it is a monotone increasing function

of t for each x in I. The last statement follows directly from the nonnegativity

of the given functions and the nondecreasing behavior of a(x, t) as a function

of t, 1. 2 . With the same estimates as used in Theorem 2. 1 we have

Ig (x, t) - g 0(x, t)i_< 1 and
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t
[gn+I(x) t) -gn(x, t)I_< ffg n(Yt-s)-g nl(Y, t-s)I jI(y, s) p(x, y; s) g( s) dyds

1I0

Therefore we have by induction on n; for each T > 0,1 g (x t) g (x? t) -< trn(T) /n!
n+l n

for x in I and 0 < t < T where A(T) is defined in 2. 6. Using the uniqueness

of f 0 (x., t) as a continuous bounded solution to 3. Z, this shows f 0 (x, t) is for

each T > 0 the uniform limit as n -o for x in I and 0 < t < T of the sequence

gn(X. t) . Consequently, f 0 (x, t) is a monotone increasing function of t for each

x in I. Summarizing we have

3.4 fo0 (x t) is a nonnegative continuous unique solution to 3.Z bounded

in magnitude by 1 and for each x in I, it is a monotone increasing

function of t.

In particular 3.4 implies tlim f0(x: t) f 0 (x) exists for each x in I.
S00

The probability context suggests f 0 (x) is the probability for eventual extinction in

a process generated by a particle initially at x. If we can show f 0 (x, t) is continuous

in x uniformly in t then we know f (x) is continuous in x and therefore by0

the Moore-Osgood theorem on iterated limits

3.5 lim f0(x, t)= f (x) < I
t 0• .0 --

uniformly for x in I. To show f 0(x, t) is continuous in x uniformly in t, we

make the estimate
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' ~t

If 0(Xl, t) fo0 (XZt)_< la(xl, t) -a(x 2 ,t)I+ ffh[yls;fo(yt-s)]Ip(xl,y;s)-p(xZ,y;s)Ig(s)dyds
0I

< la(xl,t) - a(x2,t) I + f I P(Xl, y; s) - p(xZ,y;s) I g( s) dyds.
0 1

The uniform integrability Gondition 1. 7 gives the existence of a positive

y(c), 0 < e such that the 2nd term is < -L if Ix -x I <y(-i) . Since we
-2 2 2.

have assumed lir a(x, t) = a(x) uniformly in x, 1. 3, there exists a positive
t-,-oo

6(), 0 <E, such that the first term is'--<- if lxI x I <6(j) . This completes

the .argument and establishes 3. 5.

Letting t 0 0 in 3. 2 and using 1. 7 and 3. 5 shows f (X) is a continuous

solution to

3.6 f 0(x) a(x) + f{ f h[y, s;f 0(y)]p(x, y;s) g(s)ds} dy
I 0

with 0 <f 0 (x) < 1 for x in I. Since the function l(x), l(x) = 1 for x in I,

is a solution to 3. 6 by 1. 7, we have the problem of finding a necessary and

sufficient condition for 3. 6 to have a nonnegative continuous solution different

I from l(x).

We-define the nonlinear Urysohn operator U on theclass of nonnegative

continuous functions bounded in-magnitude by 1 on I,
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00

3.7 XUf(x) =a(x). + f{f h[y, s;f(y)]p(x),y;s)g(s)ds}dy.
I.0

The proof of the next Theorem is based on the relationship between U and the

nonlinear operator T defined in 3. 3 and the spectral properties of the derivative

of. U at l(x) 1, which is defined by

00

Kf(x) f{f-. T h(y, s; l) p(x, y; s)g( s ) ds }f( Y) dy.fK(x,Y) f(Y) dy,
1*0 I

where K(x, y) is the expected number of particles replacing at y a particle initially

at x. The transformation properties of K are given in 1. 12, and,as stated

there, K has some special spectral properties.

The spectral properties we want can be most easily obtained by approximating

K(x, y) and the continuous functions on which it operates by step functions,

forming a matrix operator with nonnegative elements to which the Perron-Frobenius'

theory can be applied. A more general theory is developed in the monograph by

M. G. Krein and M. A. Rutman, [5]. We now list for convenience those properties

for which we have use. Specifically, assuming K(x, y) is nonnegative, not

identically zero and continuous for x, y in I, the following statements are valid.

3. 8 The kernel K(x, y)has a positive characteristic number X0 such

that for any other characteristic number ) 0 _<I
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A sufficient condition for X < I is the existence of a nonnegative
0

function f(x) such that

3.9 f(x) < fK(x, y) f(y)dy
I

for x in I, [5;Chapter 6]

The next property is a result of the asymptotic behavior of the

th n)
n iterate K of the operator K when X0 is less than 1.

If X0 < 1I, then for any nontrivial, nonnegative continuous function f(x) there

is some point x0 in I such that

3. 10 f(x 0) < fK(x0, y) f(y)dy
I

We eliminate those processes having no absorption by assuming a positive

probability for a particle initially at x to be eventually absorbed at I' or in 10,

00

3. 11 0 <a(x) +j{ bo(y, s).p(x, y; s)g(s)ds }dy

1 0 0

for x in I.



#390 -17-

We can now state the

Theorem 3. 1. Suppose the condition 3. 11 is satisfied in addition to. the conditions

listed in Theorem* 2. 1. A necessary and sufficient condition for 3. 6 to have a

positi-ve continuous solution g(x) different from the function l(x) 1 is

3.,12 <1,- " 0

where X is the unique characteristic number determined by 3. 8.
0

We apply the result of Theorem 3. 1 to the probability f 0 (x) for eventual

extinction defined in 3. 5 and obtain the

Theoremn 3. Z. Assuming the conditions in Theorem 3. 1,

(a) if X0 > 1, f 0(x) = 1 for x in I and

(b) if X0 < 1, f 0 (x) is the minimum positive solution g(x) to 3.6.

Proof for Theorem 3. 1. We list some properties for the operator U which are direct

results of the strict monotonicity of h(y, s;T) as a function of T on 0 < T < 1

and the normalizationi 1.7. Letting J= {x in II-a(x) 1 } and I-J= {x in Jla(x) <'1},

we the r have the following for any nonnegative continuous function f(x)' which is

bounded above by 1 and not identically 1I
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3.13 Uf(x)-1 for x in J and

Uf(x) < i for x in I-J.

Suppose g(x) is a solution to 3.6, g(x) Ug(x) . Then 3.13 implies

1 -g(x) is positive for x in I - J. Since l(x) UI(x), 1.7, 1.11 and Z I

imply

00

3.14 0 < I-g(x)=f{ f[1-h[y,s;g(y)]]p(x,y;s)g(s)ds}dy
1 0

<f[ - g(y) jK(x, y) dy
I

for x in I - J. Therefore by 3. 9, the characteristic number X0 for K(x, y),

determined by 3. 8, satisfies X0 < 1, proving the necessity of the condition.

To prove the sufficiency, we define g (x) 0 and
0

3.15 g n+(X) Ug n(X)

for x in I. We have g .(x) 1 for x in , 3. 13. Using the strict montonicity

of h(ys;T) in T on 0 < T < 1, we have
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3.16 Uf(x) <LUg(x)

for x in I - when f(x) <g(x) on I - J. Assumption 3. 11 and property 3. 13

imply 0 < (x) < 1 on I - J; and so, 3. 16 implies gI(x) =Ug 0(x) <Ug (x) g z(x)

on I - J. by induction on n, we have for n 1, 2, 3,

3.17 0 <gn (x) <g n+(x) < 1

for x in I- J.

The inequality

Ign(x)I -gn((x) I< a(x -a(x2) I + f IK(xl, y) - K(X2 , y) I dy
I

and the continuity of K(x, y) show g (x) is continuous in x uniformly in n.n

This and 3. 17 imply the existence of

3. 18 lim g (x) = g(x)
n.-- n

uniformly for x in I. Therefore letting n-- 0 in 3. 15 shows g(x) is a

continuous solution to 3. 6 satisfying 0 < g(x) < I for x in I - J ond g(x)

for x in J.

We now show g(x) is different from l(x) = 1 whon 0 < I . For this
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purpose we introduce the collection of kernels defined by

00

K(x, y;-T) h(y, S;T) p(x, y; s)g(s) ds
0

for xy in I and 0 <T < 1; so that K(x,y;l)= K(x, y), defined in 1.11.

We use the assumptions in 1. 1, 1.3, 1.4 and 1.7 to state K(xy;T) is

nonnegative and continuous for x, y in I and 0 <T < 1. Since i±(y, s) is

positive on its domain, K(x, y; T) and the kernel

0o

P(x'y) f p(x, y; s) g(s) ds
0

vanish together.

Each kernel K(x, y; T) has a positive characteristic number X 0(T)

determined by 3.8. Using the continuity properties of K(x, y; T) in x, y and T

and the Fredholm theory for integral operators with continuous kernels, we can

show that the Fredholm determinant d(%; T) for K(x, y; T), where X is the

spectral parameter, is a continuous function for I X < and 0 < T < 1 and an

entire function of X for fixed T. This is sufficient to assert X (T) is a

continuous function on 0 < T < 1. This and the assumption %0= X0(1) <1

* imply the existence of a T < 1 such that X (T) < 1 for T < T <_I. We now

develop a contradiction from the assumption g(x) l(x) . If this be valid, the

uniform convergence of g. (X) *to g(x), 3. 18, implies the existence of a positive
n
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I -T

integer N(T l) such that gn(x) is uniformly close to l(x) ,gn(X) > T +

for n > N( T 1 ) . Therefore using the mean value theorem and the strict monotonicity of

a
T- h( y, S; T). as a function of T, we have

I

for x in I - I. Assuming X 0 (TI) < 1 , property 3. 10 gives the existence of

some x 0 in I such that

f(l - N(y)))K(x0, Y;T 1 )dy_> 1 - gN(x0).
I

Since K(x, y; T1 ) and P(x, y) vanish together, we know x0 is in I - I. Therefore

this and 3. 19 imply

1 - gN+1(x 0 ) > 1 - gN(x0) or gN+I(x0 ) <gN(x 0 )•

contradicting 3.17. Consequently, g(x) is different from l(x) when X0 < 1

proving the sufficiency of the condition.

The operators U and T have a structural relation which is utilized

for the proof.of Theorem 3. Z.
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Proof for Theorem 3.2. If X 0> 1, the results of Theorem 3. assert f0 (x) = 1,

x in I, proving (a). To prove (b) , we recall the probability for eventual extinction

is given by f 0(x) = lim f (x,t) as t-* 0c, 3.5. We have also shown

f(x, t) = lim Tgn (x, t) as n-- 0 with the operator T and the functions gn(x, t)

defined in 3. 3. The operator T has a monotone property similar to that for the

operator U, 3. 16. It is

3.20 Tf(x, t) <Tg(x, t)

for x in I - J and. 0 <t if f(xt) <g(xt) on the same set. Since g0 (xt) 0

and a(x, t) < a(x) , 1.2 , we have

g 1 (x, t) = Tg (x,0t) <Ug (x) =gl(x)

for x in I - j and 0 < t < 00, and so, an induction argument using 3. 20 gives

gn+1(x, t) = Tgn(x, t) < Ugn(x) = gn+l(X)

on the same set, where the gn(x, t) are given by 3. 3 and the gn (x) by 3. 15.

Therefore we have
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3.21 f (X, t) = irn g (X, t) < Jrn g (x) = g(x) and
0 n -- n- 0oo n

f (X) = tim f t) 0< g(x)
0 t - C

for x in I where g(x) is defined in 3.18.

We next show that g(x) is the minimal positive solution to 3.6.

Suppose h(x) is a continuous solution to 3. 6 satisfying 0 < h(x) < 1 for

x in I. Using the monotone property 3.16 for U, we have

g1 (x) = Ugo (x) < Uh(x) = h(x)

for x in I; and so using induction, for each n

gn+l(x) = Ugn(x) < Uh(x) = h(x)

for x in I. This result shows Jrn = g (x) = g(x) < h(x) . Therefore 3. 21 implies
n- 00 n

f (x) = g(x) on I, completing the characterization of f (x) as the minimal

positive solution to 3. 6.
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